Larry Matherly

Larry Matherly

Eunice and Milton Ring Endowed Chair for Cancer Research
Associate Center Director for Basic Sciences
Director, Cancer Biology Graduate Program
Barbara Ann Karmanos Cancer Institute


Larry Matherly

Office Address

421 East Canfield
Detroit, MI 48201-1976


Adrianne Wallace-Povirk and Aamod Dekhne (Graduate 4/29/2019)

Research Interests

• Cancer metabolism
• Mitochondrial metabolism
• Folates and one-carbon metabolism
• Drug discovery
• Translational studies of chemotherapy response and resistance

Research Description

Metabolic reprogramming is a hallmark of cancer. Of the altered metabolic pathways in cancer, one-carbon (C1) metabolism is notable. C1 metabolism encompasses folate-mediated C1 transfer reactions and related processes, including nucleotide and amino acid biosynthesis, anti-oxidant regeneration, and epigenetic regulation. Uptake of folates into tissues is mediated by the major facilitative transporters, the reduced folate carrier (RFC) and the proton-coupled folate transporter (PCFT), and by folate receptors (FRs) α and β. C1 pathways are compartmentalized in the cytosol, mitochondria and nucleus. Current studies in the Matherly laboratory focus on understanding the biology of C1 metabolism and related processes in relation to therapy of cancer, as well as other diseases.

1. Based on patterns of tumor-selective expression and/or function of FRs and PCFT, our studies focus on discovery of novel cytotoxic drugs that target tumors via their selective membrane transport. For instance, solid tumors such as ovarian cancer express high levels of FRs, and tumors such as pancreatic ductal adenocarcinoma, lung adenocarcinoma, and malignant mesothelioma express high levels of PCFT. For PCFT, transport occurs under acidic pH conditions that characterize the tumor microenvironment. We are working to advance our most optimal agents with the best balance of FR and PCFT transport specificity and potent antitumor efficacy to the clinic.
2. Ongoing studies explore the transcriptional and posttranscriptional regulation of PCFT- and RFC-mediated transport in the context of targeted therapies with the goal of further harnessing these systems for tumor-selective delivery of PCFT-targeted therapies.
3. Recent insights into C1 metabolism in cancer cells, including the critical role of the mitochondrial C1 metabolism from serine as a major source of C1 units, glycine, reducing equivalents and ATP, suggests that key metabolic enzymes including serine hydroxymethyltransferase 2 (SHMT2) could be independent prognostic factors and important therapeutic targets for cancer. Based on our discovery of powerful inhibitors of SHMT2 with broad-based anti-tumor efficacy, we are now exploring the broader biological role of mitochondrial C1 metabolism in cancer cells with the goal of developing new therapies.
4. There is growing interest in the role of immune populations as critical determinants of anti-tumor responses to standard and targeted therapies for many cancers. Ongoing studies explore the potential of targeting FRβ-expressing tumor-associated macrophages (TAMs) for therapy of ovarian cancer. TAMs are the most abundant immune population in ovarian cancer and contribute to an immunosuppressive environment, permitting these tumors to evade immune detection.

Selected Publications

Dekhne AS, Hou Z, Gangjee A, Matherly LH. Therapeutic targeting of mitochondrial one-carbon metabolism in cancer. Mol Cancer Ther 2020;19:2245–55.

Dekhne AS, Ning C, Nayeen MJ, Shah K, Kalpage H, Frühauf J, Wallace-Povirk A, O'Connor C, Hou Z, Kim S, Hüttemann M, Gangjee A, Matherly LH. Cellular pharmacodynamics of a novel pyrrolo[3,2-d]pyrimidine inhibitor targeting mitochondrial and cytosolic one-carbon metabolism. Mol Pharmacol. 2020;97:9-22.

Dekhne AS, Shah K, Ducker GS, Katinas JM, Wong-Roushar J, Nayeen MJ, Doshi A, Ning C, Bao X, Frühauf J, Liu J, Wallace-Povirk A, O'Connor C, Dzinic SH, White K, Kushner J, Kim S, Hüttemann M, Polin L, Rabinowitz JD, Li J, Hou Z, Dann CE 3rd, Gangjee A, Matherly LH. Novel pyrrolo[3,2-d]pyrimidine compounds target mitochondrial and cytosolic one-carbon metabolism with broad-spectrum antitumor efficacy. Mol Cancer Ther. 2019;18:1787-99.

Hou Z, O'Connor C, Frühauf J, Orr S, Kim S, Gangjee A, Matherly LH. Regulation of differential proton-coupled folate transporter gene expression in human tumors: transactivation by KLF15 with NRF-1 and the role of Sp1. Biochem J. 2019;476:1247-66.

Ravindra M, Wilson MR, Tong N, O'Connor C, Karim M, Polin L, Wallace-Povirk A, White K, Kushner J, Hou Z, Matherly LH, Gangjee A. Fluorine-Substituted Pyrrolo[2,3- d]Pyrimidine Analogues with Tumor Targeting via Cellular Uptake by Folate Receptor α and the Proton-Coupled Folate Transporter and Inhibition of de Novo Purine Nucleotide Biosynthesis. J Med Chem. 2018;61:4228-48.

Shah K, Raghavan S, Hou Z, Matherly LH, Gangjee A. Development and validation of chemical features-based proton-coupled folate transporter/activity and reduced folate carrier/activity models (pharmacophores). J Mol Graph Model. 2018;81:125-33.

Ravindra M, Wallace-Povirk A, Karim MA, Wilson MR, O'Connor C, White K, Kushner J, Polin L, George C, Hou Z, Matherly LH, Gangjee A. Tumor Targeting with Novel Pyridyl 6-Substituted Pyrrolo[2,3- d]Pyrimidine Antifolates via Cellular Uptake by Folate Receptor α and the Proton-Coupled Folate Transporter and Inhibition of De Novo Purine Nucleotide Biosynthesis. J Med Chem. 2018;61:2027-40.

Matherly LH, Hou Z, Gangjee A. The promise and challenges of exploiting the proton-coupled folate transporter for selective therapeutic targeting of cancer. Cancer Chemother Pharmacol. 2018;81:1-15.

Giovannetti E, Zucali PA, Assaraf YG, Funel N, Gemelli M, Stark M, Thunnissen E, Hou Z, Muller IB, Struys EA, Perrino M, Jansen G, Matherly LH, Peters GJ. Role of proton-coupled folate transporter in pemetrexed resistance of mesothelioma: clinical evidence and new pharmacological tools. Ann Oncol. 2017;28:2725-32.

Hou Z, Gattoc L, O'Connor C, Yang S, Wallace-Povirk A, George C, Orr S, Polin L, White K, Kushner J, Morris RT, Gangjee A, Matherly LH. Dual Targeting of Epithelial Ovarian Cancer via Folate Receptor α and the Proton-coupled Folate Transporter with 6-Substituted Pyrrolo[2,3-d]pyrimidine Antifolates. Mol Cancer Ther. 2017; 16:819-30


PhD (1981): Pennsylvania State University, State College, Pennsylvania

Courses Taught

CB7210 Fundamentals of Cancer Biology
CB7240 Principles of Cancer Therapy
CB7300 Special Topics F31 Grant Writing Course

← Return to listing